
PHYSICAL REVIEW E 66, 066217 ~2002!
Fluctuation formula for nonreversible dynamics in the thermostated Lorentz gas
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~Received 14 January 2002; published 30 December 2002!

We investigate numerically the validity of the Gallavotti-Cohen fluctuation formula in the two- and three-
dimensional periodic Lorentz gas subjected to constant electric and magnetic fields and thermostated by the
Gaussian isokinetic thermostat. The magnetic field breaks the time reversal symmetry, and by choosing its
orientation with respect to the lattice, one can have either a generalized reversing symmetry or no reversibility
at all. Our results indicate that the scaling property described by the fluctuation formula may be approximately
valid for large fluctuations even in the absence of reversibility.
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The Lorentz gas~LG! thermostated by a Gaussian isok
netic ~GIK! thermostat is one of the most popular models
the study of the relationship between transport properties
chaotic behavior in nonlinear dynamical systems. Since
microscopic dynamics of the LG is chaotic, and on a su
ciently long time scales it possesses a well defined ma
scopic transport coefficient, it can be used to study the c
nection of microscopic chaos and macrosco
nonequilibrium behavior.

The so-called fluctuation formula~FF! has first been ob-
served numerically in a system of thermostated fluid p
ticles undergoing shear flow@1#. In that model, trajectory
segments violating the second law of thermodynamics w
found with probabilities exponentially smaller than those
trajectory segments associated with normal thermodynam
behavior. More precisely, letjt(t) denote theentropy pro-
duction rate j averaged over a time interval of lengtht
centered around timet: jt(t)5(1/t)*2t/2

t/2 j(t1t8)dt8, and
let us consider it as a probabilistic variable. Then its stati
cal properties in a steady state can be characterized
probability densityJt(x). The fluctuation formula states@2#
that this probability density has the following property:

lim
t→`

1

t
ln

Jt~x!

Jt~2x!
5x. ~1!

One of the interesting features of the FF is that it seems to
valid in systems far from equilibrium, not just for vanishin
external fields.

After discovering the formula numerically, analytical r
sults were obtained about its validity in deterministic sy
tems such as transitive Anosov systems@3# and special re-
versible maps@4,5#. In the proofs of these theorems, thetime
reversibility of the system plays a key role@12#. Neverthe-
less, proving fluctuation theorems under more general co
tions seems to be exceedingly difficult. In this context, ev
relatively simple systems such as the LG, with or witho
magnetic field, seem to be out of reach for the existing a
lytical techniques. It is also unclear how the FF should lo
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like in systems with nonreversible dynamics@6#. Conse-
quently, reliable numerical results for such models may p
vide valuable hints in the search for more sophisticated t
oretical approaches.

The field driven Lorentz gas consists of a charged part
subjected to an electric field moving in the lattice of elas
scatterers. For the sake of simplicity, we take a square
cubic lattice in our study, depending on the dimensionality
the system. Due to the applied electric field, one must us
thermostating mechanism to achieve a steady state in
system. Such a tool is the Gaussian isokinetic thermos
which preserves the kinetic energy of the particle; for a
view see, e.g., Ref.@7#, and further references therein. W
will also apply a constant external magentic field to cont
the reversibility of the dynamics.

Throughout our work, we use dimensionless variabl
We choose the units of mass and electric charge to be e
to the mass and electric charge of the particle, so we h
m5q51 in our model. The unit of distance is taken to b
equal to the radius of scatterers (R51), and the unit of time
is chosen to normalize the magnitude of particle velocity
unity. Let q5(q1 , . . . ,qn) denote the position andp
5(p1 , . . . ,pn) the momentum of the particle in th
n-dimensional space (n52 or 3!. Due to the normalization
upu51. The phase space variable of the system isG
5(q,p); it is transformed abruptly at every elastic collisio
and evolved smoothly by the differential equation

q̇5p,
~2!

ṗ5E1p3B2ap

between them. Herea is called thethermostat variable,
while E andB are constant vectors playing the roles of t
external electric and magnetic fields, respectively. The G
thermostat corresponds to the choicea5Ep in Eq. ~2!. For
n52, B is thought to be perpendicular to the plane of moti
given by the directions ofE andp. We note that Eq.~2! is
dissipative, but forB50 it has also time reversal symmetr

Dissipation can be measured by the phase space con
tion rates. It can be computed by taking the divergence
the right-hand side of Eq.~2!,

s52div Ġ52~n21!a, ~3!
©2002 The American Physical Society17-1
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and it can be shown~see, e.g., Ref.@8#! that in our case

s~ t !5j~ t !. ~4!

We note that the validity of this identity does depend on
choosen model and cannot be treated as a general pro
@7,9,10#.

The notion of reversibility@11#, an extension of time re
versal symmetry, can be formulated in terms of the ph
space flowFt defined byG(t)5FtG0. We say that the flow
is reversible, if there exists a mapG, which is an involution
~i.e., G2 is the identity! and bracketing the flow byG re-
verses the direction of time,

GFtG5F2t. ~5!

Time reversal symmetry is a special case of reversibility w
a particular choice of the involution:G0(q,p)5(q,2p).

In the LG, reversibility depends on the directions of t
field vectors relative to each other and the lattice. It can
checked easily that our system is time reversible ifB50, and
not otherwise. In Ref.@13#, we have also shown that th
system is stillreversiblefor BÞ0 if the plane containingE
andB is a symmetry plane of the lattice. Since the transf
mation G5MG0 ~whereM is a mirroring ofq and p with
respect to the plane containingE andB) satisfies Eq.~5!, the
smooth flow is always reversible. This means that the rev
ibility of the full dynamics including the collisions require
that the invariant plane ofM be a symmetry plane of th
lattice @13#. In the two-dimensional case, this is simplified
the condition thatE has to be contained by the symmet
plane of the lattice.

The goal of our numerical simulations was to meas
Jt(x) with a precision sufficient to check the validity of th
fluctuation formula. Due to Eq.~4!, Jt(x) could be mea-
sured by periodically computingst along a particle trajec-
tory and making a histogram of these data. The disadvan
of this method is that the range of possiblest values de-
pends on the strength of the electric field. Instead, we m
introduce the quantity

pt~ t !5
1

tE2t/2

t/2

nEp~ t1t8!dt8, ~6!

where nE denotes the unit vector parallel toE. Since the
magnitude ofp is unity, pt always satisfiesptP@21,1#. By
making a histogram of the periodically measured values
pt , one gets an approximation of its probability dens
Pt(x). Since the two probabilistic variables satisfyst5(n
21)Ept , the connection of the probability densities is

Jt~x!5
1

~n21!E
PtS x

~n21!ED . ~7!

Then we can rewrite the fluctuation formula as

lim
t→`

1

~n21!E

1

t
ln

Pt~x!

Pt~2x!
5x. ~8!
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At a first glance,Pt(x) behaves similarly in all cases: a
t grows, Pt(x) becomes more and more concentrat
around its mean value. This typical shape is shown in Fig
It can be noticed that the curve looks like a Gaussian,
though it is clear that it must be different due to the fin
range ofx @14#. In a separate paper@15#, we will deal with
the properties of this distribution in more detail. In order
visualize the fluctuation formula, we introduce the quanti

Dt~x!5
1

~n21!E

1

t
ln

Pt~x!

Pt~2x!
~9!

that must exactly be linear with a slope 1 in thet→` limit
if the fluctuation formula is valid. We will investigate fo

FIG. 2. The dependence ofDt on t for different field strengths
in a two-dimensional configuration withB50. The direction ofE is
parallel with direction~5!, ~8! but its magnitude varies. The curve
appear to be linear in the dominant region on the log-log p
suggesting a power law dependence ont. This behavior seems to
be valid for other configurations as well, no matter they are reve
ible or not.

FIG. 1. The probability densityPt(x) for a two-dimensional
configuration, whereE5(0.5,0.8) anduBu50.2. The distance be
tween the centers of the scatterers isd52.1; the number of colli-
sions is 1.63108, while the average time between two collisions
'0.6. These data are similar throughout all the examples prese
in this paper.
7-2
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different configurations of the LG, how wellDt(x) ap-
proaches this behavior in numerical simulations. Due to
fact that we have a finite number of data points coming fr
a numerical trajectory of finite length, our conclusions co
cerning Dt(x) and thus the fluctuation formula are, o
course, limited to an interval@2Dt ,Dt# with Dt<1. In
practice, if the extremalpt values in a series ofN measured
data werepmin and pmax, then we identifiedDt with min
(2pmin,pmax). It is easy to check that the probability of ob
servingpt values outside this interval in another series is
the order of 1/N. Figure 2 shows thet dependence ofDt for
different field strengths withN fixed. For our simulations,N
was chosen to be 109, which means that ifDt(x) is found to
be linear on@2Dt ,Dt# with slope 1, then it can be inter
preted as the fluctuation formula is valid for fluctuations w
probabilities larger than 1029.

In the rest of the paper, we present our numerical res
for the GIK thermostated LG both in two and three dime

FIG. 3. Dt(x) for a time reversible configuration (B50) in 2D,
with E5(0.5,0.8). The inset shows that for highert values,
Dt(x)'x on @2Dt ,Dt#. The inset has the same axes as the figu

FIG. 4. Dt(x) for a time reversible configuration in 3D, with
E5(0.05,0.1,0.15) andB50. The inset shows thatDt(x) converge
to x as t gets larger. The axes of the inset are the same as in
figure.
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sions~2D and 3D!, with various values of the external field
We focus on the question, whether nonreversible dynam
leads to different scaling in the fluctuations than the o
found in reversible systems. As a general rule, we have
found any difference between time reversal symmetric ca
~i.e., with B50) and reversible ones. Indeed, time rever
symmetry can be replaced in the known fluctuation theore
by general reversibility without affecting their validity, sinc
the proofs do not make use of the special form of the in
lution G0. We note that we have tested the different dynam
cal cases with several choices for the field strengths
could not find significant deviations in the observed behav
as long as we stayed within the ergodic region of the para
eter space. In Figs. 3 and 4, we plotDt(x) for reversible
dynamics in 2D and 3D, respectively. The fluctuation fo
mula appears to be valid in both cases; the convergenc
the linear limit, however, seems to be different in them. F

.

he

FIG. 5. Dt(x) for a nonreversible configuration in 2D, with
uBu50.2 andE5(0.5,0.8). It seems that for lowert valuesDt(x)
has a breakoff from the linear curve aroundx'60.3, but the inset
shows that for highert values,Dt(x) behaves quite similarly to the
reversible case of Fig. 3. We note that this is the same configura
as the one used for Fig. 1. The inset has the same axes as the fi

FIG. 6. Dt(x) for a nonreversible configuration in 3D, withE
5(0.05,0.1,0.15) andB5(0.16,20.06,0.04). The axes of the inse
are the same as in the figure.
7-3
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2D, theDt(x) curve has deviations, decreasing in size witht
increasing, from the linear shape, while for 3D,Dt(x) ex-
hibits strongly a linear behavior with slopes approaching 1
t increases. It is worth noting that the latter convergence
also be observed in the two-dimensionalrandomLG @16#.

Our results for the nonreversible versions are shown
Figs. 5 and 6. The most striking difference compared to
reversible cases is the fact that there seems to be acubic term
present inDt(x) that does not disappear for largert values.
This term leads to a breakoff from the diagonal line foruxu
>xc'0.3, which means that there can be deviations fr
the fluctuation formula forlarge fluctuations. The slope o
the linear part, however, is still 1 in the larget limit, so the
FF can be a good approximation for small to moderate s
fluctuations. The fact that the region of validity of the F
does not shrink considerably for largert values suggests tha
the coefficient of the cubic term inDt(x) may have only
weak dependence ont. This also means that as the distrib
tion Pt(x) is concentrating around its mean value for i
creasingt values, the total statistical weight of the larg
fluctuations that are not covered by the linear regime is
creasing. In other words, the FF becomes more and m
e
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.
un
ee

06621
s
n

n
e

e

-
re

valid in a probabilistic sense ast→`, since the larger fluc-
tuations become less and less likely in that limit.

We may conclude that the FF appears to be valid in
GIK thermostated LG with reversible dynamics, both in tw
and three dimensions. For nonreversible dynamics, we h
found indications that the FF may still describe the scal
properties of fluctuations in a moderate size regime, altho
for large fluctuations there are clear deviations from it due
higher order terms inDt(x). The fact that the slope of the
linear part in the scaling behavior is the same in revers
and nonreversible cases suggests a kind of robustness fo
FF in the thermostated LG. It would be interesting to see
this remains valid in other nonequlibrium systems with no
reversible dynamics.
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