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Fluctuation formula for nonreversible dynamics in the thermostated Lorentz gas
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We investigate numerically the validity of the Gallavotti-Cohen fluctuation formula in the two- and three-
dimensional periodic Lorentz gas subjected to constant electric and magnetic fields and thermostated by the
Gaussian isokinetic thermostat. The magnetic field breaks the time reversal symmetry, and by choosing its
orientation with respect to the lattice, one can have either a generalized reversing symmetry or no reversibility
at all. Our results indicate that the scaling property described by the fluctuation formula may be approximately
valid for large fluctuations even in the absence of reversibility.
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The Lorentz gagLG) thermostated by a Gaussian isoki- like in systems with nonreversible dynami¢§]. Conse-
netic (GIK) thermostat is one of the most popular models inquently, reliable numerical results for such models may pro-
the study of the relationship between transport properties andde valuable hints in the search for more sophisticated the-
chaotic behavior in nonlinear dynamical systems. Since theretical approaches.
microscopic dynamics of the LG is chaotic, and on a suffi- The field driven Lorentz gas consists of a charged particle
ciently long time scales it possesses a well defined macrcsubjected to an electric field moving in the lattice of elastic
scopic transport coefficient, it can be used to study the conscatterers. For the sake of simplicity, we take a square or
nection of microscopic chaos and macroscopiccubic lattice in our study, depending on the dimensionality of
nonequilibrium behavior. the system. Due to the applied electric field, one must use a

The so-called fluctuation formuld&F) has first been ob- thermostating mechanism to achieve a steady state in the
served numerically in a system of thermostated fluid parsystem. Such a tool is the Gaussian isokinetic thermostat,
ticles undergoing shear floll]. In that model, trajectory which preserves the kinetic energy of the particle; for a re-
segments violating the second law of thermodynamics wergiew see, e.g., Ref.7], and further references therein. We
found with probabilities exponentially smaller than those ofwill also apply a constant external magentic field to control
trajectory segments associated with normal thermodynamicahe reversibility of the dynamics.
behavior. More precisely, lef (t) denote theentropy pro- Throughout our work, we use dimensionless variables.
duction rate ¢ averaged over a time interval of length  We choose the units of mass and electric charge to be equal
centered around timé& g,(t)=(1/7-)f2/27,2§(t+t’)dt’, and to the mass and electric charge of the particle, so we have
let us consider it as a probabilistic variable. Then its statistim=qg=1 in our model. The unit of distance is taken to be
cal properties in a steady state can be characterized by egual to the radius of scattere®< 1), and the unit of time
probability density= (x). The fluctuation formula stat¢g] is chosen to normalize the magnitude of particle velocity to
that this probability density has the following property: unity. Let q=(q4, ...,q, denote the position ang

=(p1,.--,pn) the momentum of the particle in the
1 E(x) n-dimensional spacen=2 or 3. Due to the normalization,
lim=In———=x. (1)  |p|=1. The phase space variable of the systemTis

reT B 7X) =(q,p); it is transformed abruptly at every elastic collision

and evolved smoothly by the differential equation
One of the interesting features of the FF is that it seems to be

valid in systems far from equilibrium, not just for vanishing q=p,
external fields. _ (2
After discovering the formula numerically, analytical re- p=E+pXB—ap

sults were obtained about its validity in deterministic sys-
tems such as transitive Anosov systef3§ and special re- between them. Herer is called thethermostat variable
versible map$4,5]. In the proofs of these theorems, tiime  while E andB are constant vectors playing the roles of the
reversibility of the system plays a key ro[d2]. Neverthe- external electric and magnetic fields, respectively. The GIK
less, proving fluctuation theorems under more general condithermostat corresponds to the choige Ep in Eq. (2). For
tions seems to be exceedingly difficult. In this context, evern=2, B is thought to be perpendicular to the plane of motion
relatively simple systems such as the LG, with or withoutgiven by the directions oE and p. We note that Eq(2) is
magnetic field, seem to be out of reach for the existing anadissipative, but foB=0 it has also time reversal symmetry.
lytical techniques. It is also unclear how the FF should look Dissipation can be measured by the phase space contrac-
tion rateo. It can be computed by taking the divergence of
the right-hand side of Eq2),
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and it can be showfsee, e.g., Ref8]) that in our case 7 ' - . . — —Toq =
! =04 —x
o()=&(t). (4) 61 ity SR
| | ' R
We note that the validity of this identity does depend on the °[ 128 e |
6 -

choosen model and cannot be treated as a general proper
[7,9,10.

The notion of reversibilityf 11], an extension of time re- = 4
versal symmetry, can be formulated in terms of the phase
space flowd"' defined byIl'(t) =®'T'y. We say that the flow
is reversible, if there exists a m&j which is an involution
(i.e., G? is the identity and bracketing the flow by re-
verses the direction of time,

(%)
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GO'G=d". (5

Time reversal symmetry is a special case of reversibility with  FIG. 1. The probability densityI (x) for a two-dimensional
a particular choice of the involutiorG,(q,p)= (g, — p). configuration, wherée=(0.5,0.8) andB|=0.2. The distance be-

In the LG, reversibility depends on the directions of thetween the centers of the scattererslis2.1; the number of colli-
field vectors relative to each other and the lattice. It can b&ions is 1.6¢10°, while the average time between two collisions is
checked easily that our system is time reversibB=0, and _%0.6_3. These data are similar throughout all the examples presented
not otherwise. In Ref[13], we have also shown that the N this paper.
system is stillreversiblefor B+ 0 if the plane containinde
andB is a symmetry plane of the lattice. Since the transfor-
mation G=MG, (whereM is a mirroring ofq andp with
respect to the plane containiligandB) satisfies Eq(5), the
smooth flow is always reversible. This means that the rever
ibility of the full dynamics including the collisions requires
that the invariant plane ol be a symmetry plane of the
lattice[13]. In the two-dimensional case, this is simplified to
the condition thatE has to be contained by the symmetry
plane of the lattice. 1 1 TI.(x)

The goal of our numerical simulations was to measure D.(x)=— —INm——
—_ . - . L (n—=LE 7 TI(—X)
E A(x) with a precision sufficient to check the validity of the

fluctuation formula. Due to Eq4), E(x) could be mea- that must exactly be linear with a slope 1 in thesc limit

sured by periodically computing . along a particle trajec- if the fluctuation formula is valid. We will investigate for
tory and making a histogram of these data. The disadvantage

of this method is that the range of possilte values de- 1
pends on the strength of the electric field. Instead, we may
introduce the quantity

At a first glance ]l (x) behaves similarly in all cases: as
7 grows, 11 (x) becomes more and more concentrated
around its mean value. This typical shape is shown in Fig. 1.
It can be noticed that the curve looks like a Gaussian, al-
s‘[hough it is clear that it must be different due to the finite
range ofx [14]. In a separate papét5], we will deal with
the properties of this distribution in more detail. In order to
visualize the fluctuation formula, we introduce the quantity

(€)

1 (2
wT(t)z;f lanp(t+t’)dt’, (6)
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where ng denotes the unit vector parallel ®. Since the
magnitude op is unity, 7, always satisfiesr, e[ — 1,1]. By
making a histogram of the periodically measured values of
T,, one gets an approximation of its probability density
IT,(x). Since the two probabilistic variables satisfy=(n

—1)Em,, the connection of the probability densities is 0.1 . T
1 10 100 1000
_ 1 X i
EAx)= (n—1)E e (n— 1)5) ) (@) FIG. 2. The dependence d&f, on 7 for different field strengths
in a two-dimensional configuration witB=0. The direction oE is
Then we can rewrite the fluctuation formula as parallel with direction(5), (8) but its magnitude varies. The curves
appear to be linear in the dominant region on the log-log plot,
1 1 M%) suggesting a power law dependenceorThis behavior seems to
lim —In =X. (8) be valid for other configurations as well, no matter they are revers-
(N DE 711 (—X) ible or not.
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FIG. 3. D (x) for a time reversible configuratiorB& 0) in 2D, FIG. 5. D,(x) for a nonreversible configuration in 2D, with

with E=(0.5,0.8). The inset shows that for higher values, |B|=0.2 andE=(0.5,0.8). It seems that for lower valuesD ,(x)
D (x)=~xon[—A,,A,]. The inset has the same axes as the figurehas a breakoff from the linear curve arouxwt + 0.3, but the inset
shows that for higher values,D (x) behaves quite similarly to the
different configurations of the LG, how weD (x) ap- reversible case of Fig. 3. We note that this is the same configuration
) b : : )
proaches this behavior in numerical simulations. Due to th&S the one used for Fig. 1. The inset has the same axes as the figure.

fact that we have a finite number of data points coming from_. . . '
a numerical trajectory of finite length, our conclusions Con_smns(ZD and 3D, with various values of the external fields.

cemning D(x) and thus the fluctuation formula are, of We focus on the question, whether nonreversible dynamics
9 b . . ’ leads to different scaling in the fluctuations than the one
course, limited to an interval—A_,A ] with A <1. In

ractice. if the extrematr. values in a series dff measured found in reversible systems. As a general rule, we have not
P ’ T . o . . found any difference between time reversal symmetric cases
data werem,;, and 7y, then we identifiedA ; with min

- It to check that the probability of ob (i.e., with B=0) and reversible ones. Indeed, time reversal
( 77’.“'“’77”“89" S eatsyd Otﬁ' e_ct al ne p Otha y Of 0b- symmetry can be replaced in the known fluctuation theorems
fﬁévécggfo\;%'eiigti Zeshloswlg tekg?ielgeil:joen(e:; Zi”eférls Inby general reversibility without affecting their validity, since

. . : e i T he proof not mak f th ial form of the invo-
different field strengths witiN fixed. For our simulationd\ the proofs do not make use of the special form of the invo

h t0 be $0which that i is found t lution Go. We note that we have tested the different dynami-
was chosen 1o be Ow Ich means that | T(_X) ISTOUnd 1o .5 cases with several choices for the field strengths and
be linear on[ —A .,A ] with slope 1, then it can be inter-

. ; . ) __could not find significant deviations in the observed behavior
preted as the fluctuation formula is valid for fluctuations with as long as we stayed within the ergodic region of the param-
probabilities larger than 17. . eter space. In Figs. 3 and 4, we pbt(x) for reversible

In the rest of the paper, we pres_ent our numerical _reSUItaynamics in 2D and 3D, respectively. The fluctuation for-
for the GIK thermostated LG both in two and three d|men-mula appears to be valid in both cases; the convergence to
the linear limit, however, seems to be different in them. For
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FIG. 4. D (x) for a time reversible configuration in 3D, with *
E=(0.05,0.1,0.15) an8=0. The inset shows th& (x) converge FIG. 6. D (x) for a nonreversible configuration in 3D, with
to x as  gets larger. The axes of the inset are the same as in the(0.05,0.1,0.15) an&=(0.16,-0.06,0.04). The axes of the inset
figure. are the same as in the figure.
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2D, theD ,(x) curve has deviations, decreasing in size with valid in a probabilistic sense as—«, since the larger fluc-
increasing, from the linear shape, while for 3D,(x) ex- tuations become less and less likely in that limit.
hibits strongly a linear behavior with slopes approaching 1 as We may conclude that the FF appears to be valid in the
7 increases. It is worth noting that the latter convergence ca®IK thermostated LG with reversible dynamics, both in two
also be observed in the two-dimensionahdomLG [16]. and three dimensions. For nonreversible dynamics, we have
Our results for the nonreversible versions are shown irfound indications that the FF may still describe the scaling
Figs. 5 and 6. The most striking difference compared to theroperties of fluctuations in a moderate size regime, although
reversible cases is the fact that there seems todubiaterm  for large fluctuations there are clear deviations from it due to
present inD ,(x) that does not disappear for largevalues.  higher order terms iD (x). The fact that the slope of the
This term leads to a breakoff from the diagonal line fief  linear part in the scaling behavior is the same in reversible
=x.~0.3, which means that there can be deviations fronand nonreversible cases suggests a kind of robustness for the
the fluctuation formula fotarge fluctuations. The slope of FF in the thermostated LG. It would be interesting to see if
the linear part, however, is still 1 in the largdimit, so the  this remains valid in other nonequlibrium systems with non-
FF can be a good approximation for small to moderate sizeeversible dynamics.
fluctuations. The fact that the region of validity of the FF
does not shrink considerably for largeralues suggests that
the coefficient of the cubic term iD (x) may have only
weak dependence on This also means that as the distribu-  The authors are grateful to Tasmad for fruitful discus-
tion IT.(x) is concentrating around its mean value for in- sions and a careful reading of the manuscript. This work was
creasingr values, the total statistical weight of the large supported by the Bolyai d@s Research Grant of the Hun-
fluctuations that are not covered by the linear regime is degarian Academy of Sciences and by the Hungarian Scientific
creasing. In other words, the FF becomes more and mor@esearch FoundatioiGrant No. OTKA T032981
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